
P -RI34 368 A PORTABLE I NPUT/OUTPUT
PACKAGE FOR CORAL BASED S980 i/

S,'STEIIS(U) ROYAL SIGNALS AND RADAR ESTABLISHMENT
MALYERN (ENGLAND) M P GRIFFITHS MAY 83 RSRE-MEMO-3589

UNCLASSIFIED DRIC-BR-88546 F/G 912 NEM IEE~i
EhE~hEEE-

11111 i1c5
I I 11-----~ 132 _L

W 6

1.8~

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

- -- - - - - - - - -

RSRE
MEMORANDUM No. 3589

ROYAL SIGNALS & RADAR
d ESTABLISHMENT

A PORTABLE NPU1 'OUTPUT PACKAGE FOR
CO RAL SAS ZA)' 3080 SYS I EMS

Author: Pvl P Grilfiths

PROCUREMENT EXECUTIVE,
z MINISTRY OF DEFENCE,

ME RSRE MALVERN,
WOR CS.

U 3AITE

ROYAL SIGNALS AND RADAR ESTABLISHMENT

-- 403589

Title: A PORTABLE INPUT/OUTPUT PACKAGE FOR CORAL BASED 8080 SYSTEMS

Author: M P Griffiths

Date: May 1983

SUN ARY

This memo describes a set of procedures for use with the
RCC80 Coral compiler, which enable user programs to
access the host operating system and transform integer
and floating point numbers to and from ASCII strings and
their binary representations. The structure of the
library is described, and this shows how the procedures
may be easily transported onto a new hardware configura-
tion.

Copyright

Controller HMSO London

1983

CONTRUTS

1 INTRODUCTION

2 STARTING AND STOPPING
2.1 USESTREAMS
2.2 STOP

3 FILE HANDLING
3.1 OPENINSTREAM
3.2 OPENOUTSTREAM
3.3 OPENADDSTREAM
3.41 GETSTREAM
3.5 PUTSTREAM
3.6 MESSAGE
3.7 RESETSTREAM
3.8 CLOSESTREAM

41 INTEGER INPUT AND OUTPUT
4.1 INTIN
41.2 READI
41.3 INTOUT
41.4 PRINTI

5 FLOATING INPUT AND OUTPUT
5.1 FLTIN
5.2 READF
5.3 FLTOUT
5.41 PRINTF

6 USING THE LIBRARY
6.1 Source Linkage
6.2 Object Code Linkage

7 IMPLEMENTATION OF NEW VERSIONS
7.1 Structure of the Package
7.2 Hints on Implementation
7.3 Final Remarks

8 REFERENCES

*A Currently Implemented Versions
A-1 INOUT.LIB
A.2 INOUTF.LIB
A-3 INOUTD.LIB
A.41 INOUTZ.LIB

1INTRODUCTION

The Official Definition of Coral 6611 does not specify any input or output
procedures for the language and so it has been left to implementors to inventI
their own facilities for each installation. This memo describes a library of
procedures to operate with the RCC80 compiler (originally supplied by GEC but
now supported by MicroFocus) and provides facilities to interface the user's
program to the machine's operating system to enable him to open and close
files, read and write characters to them and read and print integer and
floating point numbers.

The RCC8O compiler is hosted on the Intel MDS, and compiles Coral source to
Intel 8080/8085 assembly language. Consequently, the MDS is the most common
target for user programs and the major use of this library is to communicate
with the MDS's operating system ISIS-II. However, in order to increase the
number of applications for which this library may be used, the procedures are

* - written in such a way as to make the transportation of them onto other 8080
based systems as easy as possible.

Since different hardware and software configurations have different facili-
ties, all programs will not always work on all systems, (for example,
attempting to use a disc file depends on having a file handling system
present) but it was felt to be important that INOUT should always present
exactly the same interface to the user program. This means that in order to
change systems, it is only necessary to relink the compiled program with the
appropriate relocatable library file, and if the configuration cannot do what
the program requests then an error will be flagged at run time.

All the following procedure descriptions, therefore, are written without
assuming a specific target system (although the examples given assume an MDS
with ISIS-II as a target), and you should refer to Appendix A to find out what
facilities will operate with your chosen version. At the time of writing four
versions of INOUT have been implemented. A section is also provided to give
some guidelines for those wishing to write their own version.

Most procedures are of type integer and return a value indicating the success
or failure of the operation. A value of zero indicating success, and any
other value the reason for the failure. As these values may be dependent on
the operating system in use, you should again refer to Appendix A for the
possible error numbers and their interpretation.

All input/output files are assumed to be byte sequential, referred to as
streams throughout this memo. That is, a file is a string of characters which
must be read or written from start to finish.

2 STARTING AND STOPPING

There are two untyped procedures for initialising INOUT and exiting when
finished, these are USESTREAMS and STOP.

2.1 USESTREA1S

This procedure must be called before any attempt is made to use the other
procedures described below.

procedure USESTREAMS;

USESTREAMS has no parameters and does not return a result. Its function is to
set up the defaults for the rest of the package, and initialise any required
buffers. It is a good policy to always put it as the first statement in any
program.

2.2 STOP

This is used to terminate processing and exit to the operating system (if

any).

procedure STOP;

STOP has no parameters, and may be called from any point in the program. It
closes all open streams in their current state, and then exits to the opera-
ting system. If the configuration does not have a command level then the
processor will halt.

2.1

3 FILE HAINDLING

k Procedures are provided to open files, read or write data to them and close
them when finished.

3.1 OPNINSTRE

This opens a file for input (read).

integer procedure OPENINSTREAM (location integer FILE;
value integer STRING)

where FILE is an integer reference in which the stream number is returned and
STRING is a string containing the name of the file.

For example:

integer STATUS, READER;
STATUS:=OPENINSTREAM(READER,":HR:");
if STATUS<>O then ERROR(STATUS);

opens the paper tape reader. Note that in this example (for ISIS-I) that
devices are referred to by a similar convention to file names, except that a
special format is used with colons around the name.

3.2 OPENOUTSTREKM

This opens a file for output (write).

integer procedure OPENOUTSTREAM(location integer FILE;
value integer STRING)

where FILE is an integer reference in which the stream number is returned and

STRING is a string containing the name of the file.

For example:

STATUS:=OPENOUTSTREAM(PRINTER,":LP:");

opens the line printer.

3.3 OPEUADDSTREMI

This opens a disc file for append, i.e. addition of bytes to the end of a
previously created file.

integer procedure OPENADDSTREAM(location integer FILE;
value integer STRING);

where FILE is an integer reference in which the stream number is returned and

STRING is a string containing the name of the file.

For example:

STATUS:=OPENADDSTREAM(TABLE, "TABLE")

will open the file :FO:TABLE for append.

3.1

. -' " • . 4

3.4 GTSTREAN

This reads the next character (byte) from the specified file.

integer procedure GETSTREAM(value integer FILE;
location byte DATA);

where FILE is an integer returned from a previous OPENINSTREAM call, and DATA
is a byte reference to put the character in.

Continuing the OPENINSTREAM example:

STATUS:=GETSTREAM(READER, CHAR);

" gets the next character from the paper tape reader and puts it in CHAR.

* 3.5 PUTSTREAM

This writes a character to a given file.

integer procedure PUTSTREAM(value integer FILE;
value byte DATA)

where FILE is an integer returned from a previous OPENOUTSTREAM or
OPENADDSTREAM call, and DATA is the character to be put.

Continuing the OPENADDSTREAM example:

STATUS:=PUTSTREAM(TABLE, literal(A));

puts the ASCII code for A on to the end of the disc file TABLE.

3.6 MEMSGE

This writes a character string to a given file.

integer procedure MESSAGE(value integer FILE, STRING)

where FILE is an integer returned by a previous OPENOUTSTREAM or OPENADDSTREAM
call, and STRING is a string containing the characters to be written.

* Continuing the OPENOUTSTREAM example:

STATUS:=MESSAGE(PRINTER, "NOW IS THE HOUR");

which writes the message NOW IS THE HOUR on the line printer.

3.7 RESETSTREM

This restarts a disc file which was opened for read from the beginning, so

that it can be re-read.

integer procedure RESETSTREAM(value integer FILE)

where FILE is an integer returned from a previous OPENINSTREAM call.

3.2

3.8 CLOSEMTRE-

This closes a stream and releases the number for further use in another OPEN

call.

integer procedure CLOSESTREAM(value integer FILE)

where FILE is an integer returned by a previous OPENINSTREAM, OPENOUTSTREAM or

OPENADDSTREAM call.

Continuing the GETSTREAM example:

STATUS::CLOSESTREAM (READER);

closes the paper tape reader.

4 INTEGER INPUT AND OUTPUT

Four procedures are provided for integer input and output: INTIN and INTOUT,
which convert ASCII strings to and from binary integers, and READI and PRINTI
which use INTIN and INTOUT to transfer the results to or from a file.

1.1 INTIN

This converts an ASCII string to a binary integer.

4integer procedure INTIN (location integer VALUE;
value integer PTR;
location integer DIST)

where VALUE is an integer reference for the return of the value input, PTR is
the address of the character of which to start looking for the number and DIST
is the number of bytes the procedure searched before it reached the end of the
number. Thus PTR + DIST will be the address of the character that terminated
the number.

The rules that the character string must obey before being classed as a number

are:

(a) A number starts with a plus sign, minus sign or a digit 0 to 9.

(b) A number is terminated by a character other than a digit 0 to 9, a
letter A to F, a letter H, a letter 0, or a letter Q.

(c) The base is assumed to be 10 unless the last character is B, when the
base is 2; 0 or Q, when the base is 8; or H, when the base is 16. A
last character of D may be used to explicitly specify base 10.

d) The value input must be greater than -32767 and less than +32767.

Thus valid numbers are:

23, -4, 24Q, OFH, 00011B

but not:

40000, 8oH, BFH, 385Q

For example:

STATUS:=INTIN(VALUE, "OFFH,", DIST);

will set VALUE to 255 and DIST to 5.

4.2 REIDI

This uses INTIN to read a number from a file.

integer procedure READI(value integer FILE;
location integer VALUE);

where FILE is an integer returned from a previous OPENINSTREAM call and VALUE
is an integer reference to put the number in.

For example:

STATUS:=READI(READER, A);

* will read the next number and put it in A.

4.3 I'TWoT

This converts a binary integer to an ASCII string.

integer procedure INTOUT(value integer VALUE, PTR);

where VALUE is the number to be converted and PTR is the address where the
first character of the string will be put. Succeeding characters will be
placed in PTR + 1, PTR + 2 and so on. The format of the output string is
controlled by 6 parameters, each being set by its own procedure of the form:

integer procedure FORMAT VARIABLE (value byte SETTING)

where FORMAT VARIABLE is selected from the following table and SETTING is any
allowed value.

(1) WIDTH

This specifies the number of characters in the output field. The
characters will be stored in PTR to PTR + WIDTH -1, and the procedure
always delivers WIDTH characters. WIDTH must be between 1 and 18, if
the number is too big to go into the available space, then WIDTH
asterisks are output and a status of 103 returned.

Default: 7

(2) BASE

This specifies the base in which the number is printed. BASE must be
2, 8, 10, or 16.

Default: 10

(3) PLUSSIGN

This specifies the character to be used for printing a plus sign. It
is normally literal(+) but may be any printing character or -1 meaning
suppress the plus sign altogether.

Default: -1

(4) LEADZERO

This specifies the character to be used for leading zeroes. It is
normally literal(O) but may be any printing character or -1 meaning
suppress leading zeroes altogether.

Default: -1

(5) SIGNED

If this is set to 1, then the number will be interpreted as signed
two's complement. If 0, then it will be interpreted as positive

straight binary with no sign output.

Default: 1
7[~4

(6) POSTBASED

If this is set to 1, then the last character of the number will be B,
Q, D, or H depending on the setting of BASE. If 0, then the letter
will be suppressed.

Default: 1

To set any of the above it is necessary to call the corr -ding procedure.

For example, to set WIDTH to 12:

STATUS:=WIDTH(12);

Any attempt to set a forbidden value will result in a STATUS of 104 and the
call will be ignored.

For example:

CODE::5;
WIDTH(8);
BASE(2);
LEADZERO(literal(O));
SIGNED(O);
POSTBASED(0);
STATUS:=INTOUT(CODE,location(BUFF[O]);

will fill BUFF[O] to BUFF[7] with the ASCII string 00000101.

4I.4 PUiET

This uses INTOUT to write the string to a file.

integer procedure PRINTI(value integer FILE, VALUE)

where FILE is an integer returned from a previous OPENOUTSTREAM or
OPENADDSTREAM call and VALUE is the number to be printed.

Continuing the above example:

STATUS:=PRINTI(PRINTER, CODE)

will print 00000101 on the printer.

)A

5 FLOATING INPUT AND OUTPUT

Four procedures are provided for floating point input and output: FLTIN,

RFArF, r'LTOUT and PRINTF which work is a similar manner to their integer
counterparts.

Note that throughout this section the @ sign means "times 10 to the power".

5.1 FLTII

This converts an ASCII string to a binary floating.

integer procedure FLTIN(location floating VALUE;
value integer PTR;
location integer DIST)

where VALUE is a floating reference for the return of the value input, PTR is

the address of the character of which to start looking for the number and DIST
is the number of bytes the procedure searched before it reached the end of the
number. Thus PTR + DIST will be the address of the character that terminated
the number.

The corresponding rules for floating character strings are:

(a) A number must start with a plus sign, minus sign, or digit 0 to 9.

(b) A number is terminated by a character other than a digit 0 to 9, a plus
sign, a minus sign, an @ sign or a decimal point,

('c) The base is always 10.

(d) The value input must be greater than -1.7@38 and less than +1.7@38.

Thus valid numbers are:

123, -4.5, -3.65@-4, 6@3

but not:

~@6, .4, 1@40

5.2 READF

This uses FLTIN to read a number from a file.

integer procedure READF(value integer FILE;
location floating VALUE)

where FILE is an integer turned from a previous OPENINSTREAM call and VALUE is

a floating reference to put the number in.

5.3 PLTOUT

This converts a binary floating to an ASCII string.

integer procedure FLTOUT(value floating VALUE;
value integer PTR)

where VALUE is the number to be converted and PTR is the address where the
first character of the string will be put. Succeeding characters will be
placed in PTR + 1, PTR + 2 and so on.

The format of the output string is set by 4 parameters in a similar manner as

in INTOUT. These are:

(1) WIDTH

This specifies the number of characters in the output field. The
characters will be stored in PTR to PTR + WIDTH -1, and the procedure
always delivers WIDTH characters. WIDTH must be between 1 and 18, if
the number is too big to go into the available space, then WIDTH
asterisks are output and a status of 103 returned.

Default: 7

* (2) PLUSSIGN

This specifies the character to be used for printing a plus sign. It
is normally literal(+) but may be any printing character or -1 meaning
suppress the plus sign altogether.

Default: -1

(3) DECIPLACE

Specifies the number of digits to be printed after the decimal point.
It must be between 1 and 7. As the representation of number is
accurate to 7 significant figures, it is possible that some digits will
not be printed. In this case the last printed digit is rounded up if
the unprinted part starts with 5 or more, e.g. if DECIPLACE = 3 and
VALUE = 1.3455, this would come out as 1.346.

Default: 7

(4) AUTOFLOAT

If this is set to 1 then the decimal point is floated, if it is set to
0 then scientific notation is used i.e. the number is printed in the
form x.xxx@xx . However, even if AUTOFLOAT is set to 1 there are two
situations in which FLTOUT will revert to scientific. These are (a) if
the number is greater than 9999999, and (b) if DECIPLACE is set such
that the number to be printed would be truncated to zero. For example,
in the situation DECIPLACE = 2 and VALUE = 0.0004 then if scientific
notation were not used, this would be printed as zero with a consequent
loss of accuracy. Note that whichever notation is used you still get
DECIPLACE digits after the decimal point.

Default: 1

5.2

For example:

NUM:=1 .34567;
WIDTH(1);
DECIPLACE(4;
STATUS:=FLTOUT(NUM, locationCBUFF[0]);

will fill BUFF[OJ to BUFF[S' with the ASCII string:

sssl.34567 where s means space.

5.4 PRIETF

This uses FLTOUT to write the string to a file.

integer procedure PRINTF(value integer FILE;
value floating VALUE)

where FILE is an integer returned f'rom a previous OPENOUTSTREAM or
OPENADDSTREAM call and VALUE is the number to be printed.

6 USING THE LIBRARY

As mentioned in the introduction, there is more than one version of INOUT
depending on which system the program is to be run. At the time of writing
there are four versions of INOUT, the differences between these versions are
described in detail in Appendix A.

6.1 Source Linkage

In order to enable a program to use the package, it must have the necessary
external linkages to the INOUT procedures. This is achieved by placing a
library call to the file INOUT.EXT at the top of any segment which uses the
procedures:

coral PROG

library "INOUT.EXT"

begin

etc.

This file is the same for all versions of INOUT, therefore it is not necessary
to recompile a program to run with another version provided, of course, that
both configurations can provide the required facilities.

6.2 Object Code Linkage

When the program has been compiled it must be linked with the appropriate
relocatable library file (and SYSTEM.LIB if on the MDS) before being run. Thus
the stages to go through to compile and link a single segment program would
be:

CORAL PROG.CRL$S
ASM8o PROG.MC8 NOPRINT
LINK PROG.OBJ,INOUT#.LIB,CORAL.LIB,SYSTEM.LIB TO PROG.LNK
LOCATE PROG.LNK

Where the INOUT#.LIB refers to one of the INOUT libraries as selected from
those available as documented in Appendix A. Note that SYSTEM.LIB is only
required if you are using INOUT.LIB or INOUTF.LIB as these are the versions
which have the MDS as a target.

Due to the way the compiler works, if INOUT.EXT is inserted as it stands, you
always get all the procedures included in the final program, not just the ones
you actually use. So, to reduce the amount of code and link/locate time, you
can edit INOUT.EXT to remove the external references to procedures you do not
use. Removing all the floating procedures, for example, for just integer
working.

7 IMPLEMENTATION OF NEW VERSIONS

This section is provided to give some guidance to those users who wish to
transport the package onto a new system. I will start off with a brief

description of the structure of the library, indicating what needs to be done
in order to write a new version. This is followed by some hints on what the
altered versions of the procedures should contain so as to maintain the maxi-
mum of compatibility with existing versions.

7.1 Structure of the Package

Each version of INOUT is composed of a number of files, these are:-

(1) The Coral source of USESTREAMS
(2) The Coral source of the three OPENSTREAM procedures which are

implemented as a single procedure with an additional parameter
(3) The Coral source of CLOSESTREAM
(4) The Coral source of GETSTREAM

(5) The Coral source of PUTSTREAM
(6) The Coral source of RESETSTREAM
(7) The Coral source of MESSAGE
(8) The Coral source of STOP
(9) An assembly language program to declare the external variables as

required by the compiler

(10) The Coral source of 4 utility character checking procedures (not
directly accessable as part of INOUT)

(11) The Coral source of the procedure that handles the setting of the
format variables

(12) The Coral source of INTIN --

(13) The Coral source of READI

(14) The Coral source of INTOUT
(15) The Coral source of PRINTI
(16) The Coral source of FLTIN
(17) The Coral source of READF
(18) The Coral source of FLTIN
(19) The Coral source of PRINTF
(20) The file to be inserted at the top of every program that contains the

external declarations of the procedures (INOUT.EXT)

The last 11 of these files (numbers 10 to 20) are exactly the same regardless
of the version used. Consequently, the implementation of a new version of
INOUT consists of writing new versions of the first 9 files to interface
either with an existing operating system or directly with the hardware of the
target machine. Each INOUT#.LIB is composed of the compiled code of all of the
above files (except (20), of course) put together by the Intel LIB program.
Due to the fact that the ISIS assembler will only accept symbols of 6 char-
acters or less, the names of procedures longer that this limit are abbreviated
to 6 characters by the use of a macro in INOUT.EXT (e.g. USESTREAMS is
abbreviated to QUSEST).

7.2 Hints on Implementation

In order to maintain the ability to change versions by merely relinking the
object code of the user's program with a different library file, it is
necessary to provide dummy routines in certain cases so as to tie off the
loose ends of a facility which is not implementable in the new configuration.
To take a simple example, RESETSTREAM is not usable without a disc filing

7.3 Final Remarks

Although this memo has assumed that the RCC8O compiler hosted on the MDS will
be used, there is no reason why other Coral compilers on different hosts
should not be able to use most of the principles and code contained in this
package. In order to do this, the host compiler must be able to compile
programs containing the byte type, be able to generate code to address bytes
and the target must use the ASCII character set.

8 RZFEREICS

(1) "Official Definition of Coral 66",
HMS0, 1970

[2] H S Field-Richards,
"The DISCUS Hardware System",
RSRE Report 82010

[3] Intel Corp,
1IS15-II User's Guide",

Intel 9800306

(4I) H S Field-Richards, M P Griffiths,
"DISCUS Multiprocessor Enhancements",

* RSRE Memo 3591
~Wij

APPENDIX A

Currently Implemented Versions

&.1 IEOUT.LIB

This is the standard library for use with the MDS and ISIS-II. Consequently,
the following restrictions apply:

(1) Device and file names correspond to the normal ISIS conventions, that
is a file name is a string of up to six characters with an optional
three character extension. Device names are enclosed in colons, e.g.
:HR: for the paper tape reader.

(2) STOP closes all open files except the current console and returns to
the ISIS command level.

(3) Stream numbers 0 and 1 are always open and refer to the current console
output and input respectively

(4) GETSTREAM and the other procedures that use it (READI, READF) properly
return a status number of 101 at the end of file.

(5) MESSAGE is more efficient than a repeated call of PUTSTREAM.

Note that in this version all transfers to and from the peripherals are
unbuffered. This has the advantage that the status of the transfer is checked
at every procedure call, as ISIS is invoked every time. However, it does mean
that programs with lots of disc access run very slowly. Use this version for
debugging and the faster version (INOUTF.LIB) for running if you suffer from
this problem.

A.2 INOUTF.LIB

This version also runs on the MDS with ISIS-II and provides the same facili-
ties as INOUT.LIB, but is provided with large buffers for access to all
peripherals (except the console). Thus programs with large amounts of input
and output run much faster (factors of 7 are typical), but the price paid for
this is the reduced frequency of error checking and the enormous memory
overhead (about 24k). However, for most programs of normal size this is not
too much of a problem.

Note that MESSAGE is not more efficient than PUTSTREAM in this version.

Cautionl Due to the internal buffers that INOUTF uses, it is extremely
dangerous to use the ISIS system calls OPEN, CLOSE, READ, WRITE, and SEEK in a
program using this version.

A.3 IEOoTD.LIB

This version runs on a DISCUS 8080 style processor [2] together with the 8080
Fperipheral card with software version 2.1 or greater. Since this configuration

does not have discs or any resident system software the following restrictions
apply:

(1) A call of STOP halts the processor.

(2) Calls of OPENADDSTREAM and RESETSTREAM and OPENIN/OUTSTREAM with non-
device type file names produce non-zero error returns and the call is
ignored.

(3) Available devices names are:- :CO:, :CI:, :HR:, :HP: and :LP:. As with
ISIS, :CO: and :CI: are given the stream numbers of 0 and 1, and are
always open.

(4) GETSTREAM only gives a proper end of file indication for :HR:.

(5) MESSAGE is more efficient than repeated calls of PUTSTREAM.

A.4 IEOUTZ.LIB

This version runs on a DISCUS 8085 style processor[4) together with the Z80
peripheral card with software version 2.0 or greater and an intelligent bus
supervisor card. Again, this confi: iration does not have discs or any resident
system software so the following restrictions apply:

(1) A call of STOP halts the processor.

(2) Calls of OPENADDSTREAM and RESETSTREAM and OPENIN/OUTSTREAM with non-
device type file names produce non-zero error returns and the call is
ignored.

* (3) Available device names are:- :CO:, :CI:, :HR:, :HP:, :FP: and :LP:. As
with ISIS, :CO: and :CI: are given the stream numbers of 0 and 1, and
are always open. The device :FP: refers to the LED front panel display
which enables a message of up to 16 characters to be displayed.

(4) GETSTREAM only gives a proper end of file indication for :HR:.

(5) MESSAGE is more efficient than repeated calls of PUTSTREAM.

A.5 Zrror Numbers

* As stated previously, these error numbers are consistent throughout all the
" versions of the pack ge. Numbers less than 100 are derived from the equivalent
• ISIS error number[3* New numbers should be assigned in ascending order from

the last number in this list.

. 100 Character too big for the indicated base, e.g. the 8 in 438Q.
101 Attempt to read off the end of a file.
102 Overflow, the number is too big.

" 103 WIDTH is not wide enough to accommodate the number.
104 Attempt to set an invalid value for a format variable.
105 Plus or minus sign with no following characters detected.

A.2

DOCUINT CONTROL SHEET

Overall security classification of sheet UNCLASSIFIE ...

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter
-.. classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. ORIC Reference (if known) 2. Originator's Reference 3. Agency Reference ',. Report Security• UNCTASS- Classi f icat ion
MEMORANDUM 3589 IFIED

S." 5. Originator's Code (if 6. Originator (Corporate Author) Name and Location

known) ROYAL SIGNALS AND RADAR ESTABLISHMENT

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and location

*-: Code (if known)

7. Title

A PORTABLE INPUT/OUTPUT PACKAGE FOR CORAL BASED 8080 SYSTEMS

* .
7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title, place and date of conference

8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3,4... 10. Date cp. rel.
.:;GRIFFITHS, M.P. II

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

UNLIMITED

Descriptors (or keywords)

continue on separate ciece of -acer

Attract

This memo describes a set of procedures for use with the RCC 80 Coral

compiler, which enable user programs to access the host operating system

and transform integer and floating point numbers to and from ASCII strings

and their binary representations. The structure of the library is described,

and this shows how the procedures may be easily transported onto a new

hardware configuration.

